

Unlocking Visual Anomaly Detection

The Evolution of Visual Anomaly Detection
VLMs, MLLMs, and Generalizable Inspection

Hossein Kashiani

Clemson University

December 3, 2025

- **The Imperative:** The Trillion Dollar Problem.
- **Problem Definition:** Visual Anomaly Detection.
- **Key Challenges:** Localization, Complexity, Camouflage, Shifts.
- **The Classical Era:** Limitations of Reconstruction & Distillation.
- **ROADS:** Robust Multi-Class AD under Domain Shift (WACV 25).
- **The Semantics Pivot (VLM):**
 - WinCLIP (CVPR 23)
 - AnomalyCLIP (ICLR 24)
- **The Reasoning Leap (MLLM):**
 - AnomalyGPT (AAAI 24)
- **Evaluation:** The MMAD Benchmark (ICLR 25).
- **Future Directions:** Where do we go from here?

The Trillion Dollar Problem: Where Anomalies Matter

- **Where Anomalies Matter:**

- **Manufacturing & QC:** Defective products, process drift, equipment wear.
- **Cybersecurity:** Intrusions, fraud, unusual traffic patterns.
- **Healthcare:** Abnormal imaging findings, vital sign outliers, rare conditions.
- **Other Domains:** Finance, transportation, energy, environmental monitoring.

- **The Economic & Safety Stakes:**

- Global manufacturing defects alone cost trillions annually.
- **Critical Impact:** Safety (automotive/aerospace), patient health (pharma), and brand reputation.

- **The Unsupervised Imperative:**

- Manual inspection cannot scale to high-speed lines (1000+ items/min).
- **Data Scarcity:** Defects are rare (< 5%) and highly variable; we cannot supervise every type.

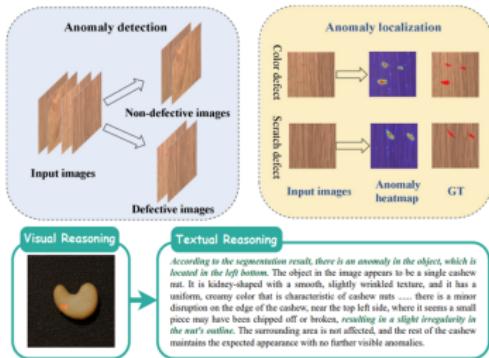
Problem Definition: Visual Anomaly Detection

Core Task

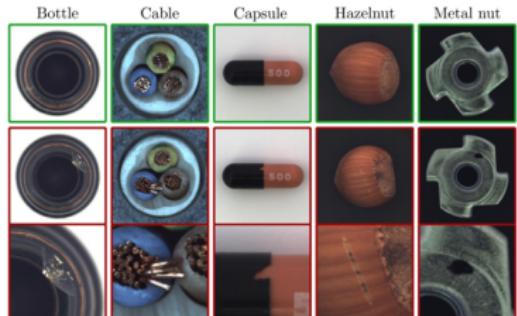
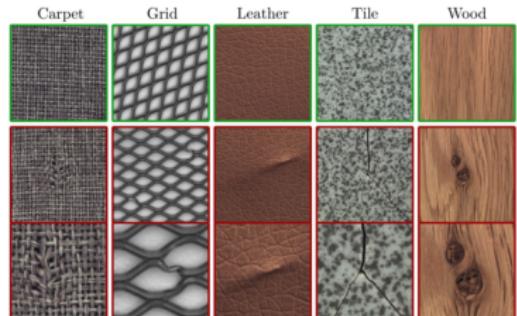
- Train on **normal** only (or zero images).
- Test: Identify deviations (pixel-level).

Goal of Modern VAD:

- Move from "One-Class-One-Model" to **Zero-Shot Generalization**.
- Detect unseen defects on unseen products without retraining.



Objectives in Visual Anomaly Detection



Normal vs. Anomalous
(MVTec-AD)

Key Challenges in Visual Anomaly Detection

Technical Hurdles

- **Precise Localization:**

Requires pixel-level accuracy and sharp boundaries.

- **Multi-Class Complexity:**

Handling diverse objects vs. textures in a single model.

- **Extreme Class Imbalance:**

Rare anomalies (< 1%); models tend to predict all-normal.

- **Domain Shifts:**

Changes in illumination, sensors, background, and process.

Training distribution		In-Distribution Test Data		Out-of-Distribution Test Data	
Normal Samples	Anomalous Samples	Normal Samples	Anomalous Samples	Normal Samples	Anomalous Samples
00 00	00 00	17	00 82	00 00	72 65

Domain Shift Challenge

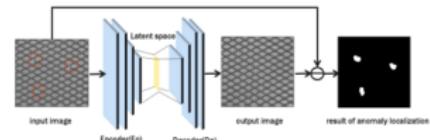
The Classical Era: Reconstruction & Distillation

• Reconstruction (AE/GAN):

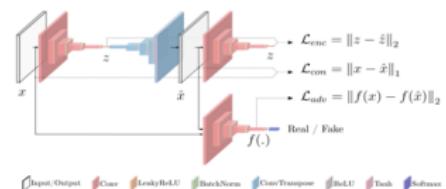
- If I can't reconstruct it, it's a defect.
- Issue: Sometimes reconstructs anomalies too.

• Knowledge Distillation:

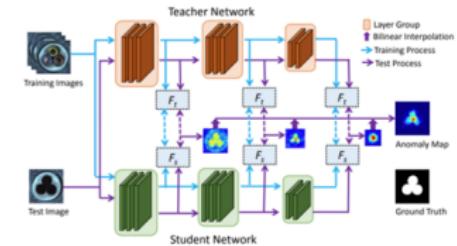
- Student mimics Teacher on normal data only.
- Issue: Fails under domain shift.



Vanilla Auto-encoder



GANomaly (GAN-Based)

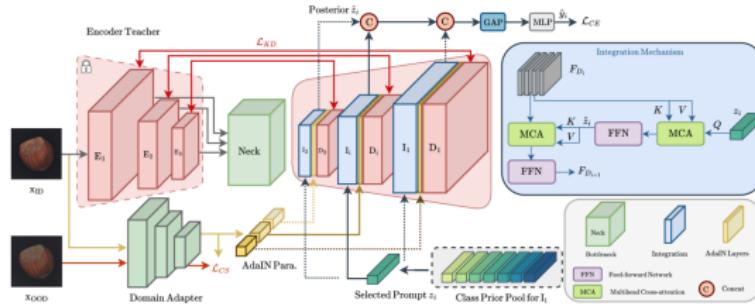


Teacher-Student Knowledge Distillation

ROADS: Robust Multi-Class AD under Domain Shift (WACV 2025) [1]

Domain Adapter with AdaIN

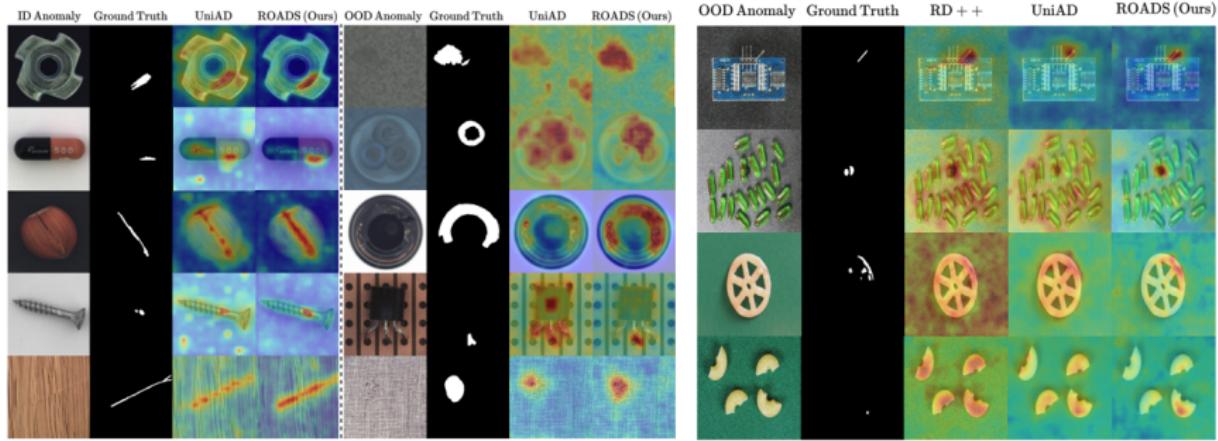
- **Challenge:** Standard unified detectors fail when test conditions differ from training (e.g., lighting changes, sensor noise).
- **Mechanism:** Uses Adaptive Instance Normalization (AdaIN) layers within the student decoder.
- **Style Alignment:** A dedicated adapter network predicts *domain-invariant style codes*.
- **Result:** Dynamically aligns the statistics (mean/variance) of OOD input features to match the Normal source distribution.



ROADS Architecture

ROADS: Visual Results on MVTec and VISA

- The qualitative results illustrates the clear superiority of our method over UniAD in OOD scenarios.
- While UniAD struggles to accurately localize anomalies under distribution shifts, ROADS consistently identifies anomalies, demonstrating greater robustness in such conditions.



Part I: The Semantic Pivot (VLMs)

From detecting pixel errors to understanding damaged objects.

- Leveraging CLIP for Zero-Shot Detection.
- WinCLIP, and AnomalyCLIP.

WinCLIP: The Pioneer (CVPR 2023) [2]

Intuition: Normality is a state defined by language.

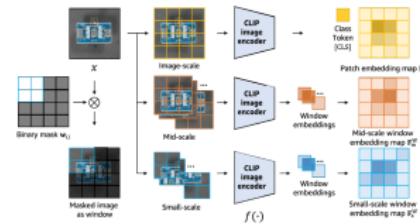
Methodology

1 Compositional Prompt Ensemble:

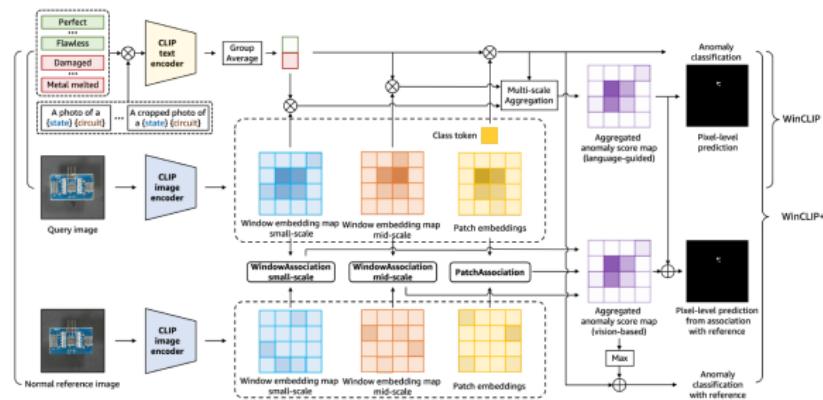
- Normal: A photo of a [flawless] [bottle]
- Anomaly: A photo of a [damaged] [bottle]

2 Window-based CLIP:

- Slide local windows and feed them into CLIP for text-aligned embeddings.



WinCLIP feature extraction



WinCLIP Architecture

AnomalyCLIP: Fixing the Focus (ICLR 2024) [3]

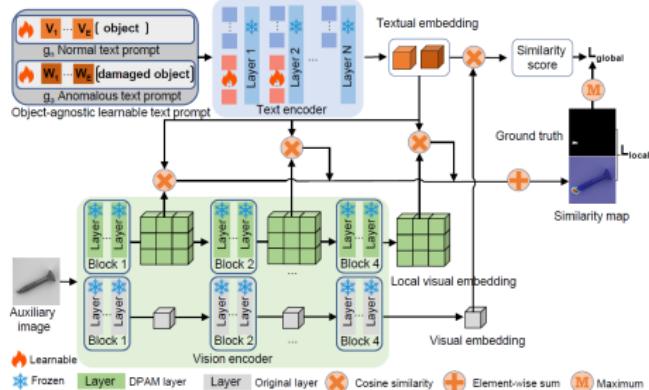
The Problem with CLIP:

- CLIP focuses on *Object semantics* ("This is a cat"), not *State semantics* ("This cat is sick").
- Embeddings are dominated by the object identity.

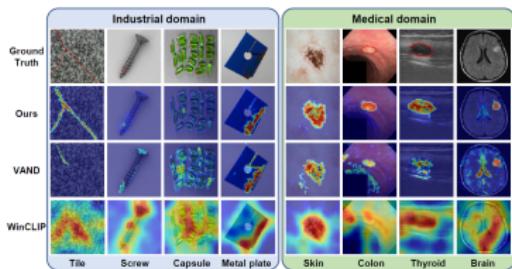
The Solution:

- Object-Agnostic Prompting:** Learn generic "[V1]... object" vs "[W1]... damaged object" prompts.

Results: Zero-shot transfer to new industrial and medical datasets without target retraining



AnomalyCLIP Architecture



Part II: The Reasoning Leap (MLLMs)

From Heatmaps to Explanations and Manufacturing Context.

- AnomalyGPT: Conversational Detection

AnomalyGPT: The Conversation Begins (AAAI 2024) [4]

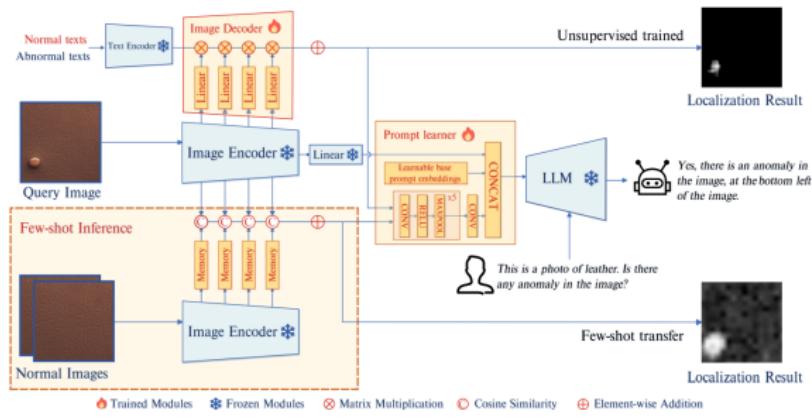
Motivation

- VLMs give a score/heatmap, but no explanation.
- Thresholding is brittle (picking 0.5 vs 0.8).

Method

- **LVLM Backbone:** ImageBind + Vicuna LLM.
- **Pixel-Decoder:** Lightweight module generating a mask.
- **Prompt Learner:** Converts mask info into prompt embeddings for the LLM.

Result: Threshold-free. Just ask: "Is there any anomaly in the image?"



AnomalyGPT Framework

MMAD Benchmark: The Reality Check (ICLR 2025) [5]

Are general MLLMs ready for the factory floor?

The Benchmark:

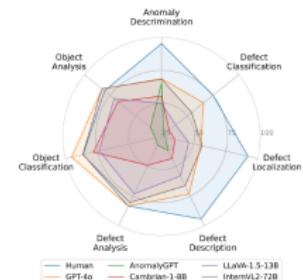
- 7 Tasks: Localization, Classification, Description, Analysis, etc.
- Tested GPT-4o, Gemini, LLaVA.

Task Type	Image	Question	Options	Answer
Anomaly Discrimination		Is there any defect in the object?	A: Yes. B: No.	
		There is a defect in the object. What is the type of the defect?	A: A tear. B: Discoloration. C: Wrinkling. D: Loose thread.	
Object Classification		What kind of product is in the image?	A: A section of garden hose. B: A cross-section of a tri-phase electrical cable. C: A bundle of fiber optic cables. D: A piece of computer hardware.	
		There is a defect in the object. Where is the defect?	A: Top left candle. B: Top right candle. C: Bottom left candle. D: Bottom right candle.	
Object Analysis		What are the subcomponents of the breakfast box?	A: Oranges, nectarine, granola, mits, and banana slices B: Oranges, apples, cereal, and dried fruit C: Granola, yogurt, and berries D: Bread, cheese, and vegetables	
		What is the likely purpose or emphasis of the traditional design elements on the cigarette box?	A: To convey modernity B: To highlight the product's origin C: To attract younger consumers D: To emphasize the product's quality	
Defect Classification		There is a defect in the object. What is the appearance of the defect?	A: The cap is slightly ajar on one side B: The cap is completely missing C: The bottle is dented D: The label is peeling off	
		There is a defect in the object. What is the potential effect of the defect?	A: Reduced performance B: Increased power consumption C: Improper insertion D: Shorter lifespan	
Defect Localization		There is a defect in the object. Where is the defect?	A: Top left candle. B: Top right candle. C: Bottom left candle. D: Bottom right candle.	
Defect Description		There is a defect in the object. What is the appearance of the defect?	A: The cap is slightly ajar on one side B: The cap is completely missing C: The bottle is dented D: The label is peeling off	
Defect Analysis		There is a defect in the object. What is the potential effect of the defect?	A: Reduced performance B: Increased power consumption C: Improper insertion D: Shorter lifespan	

MMAD Benchmark: The Reality Check (ICLR 2025) [5]

Two proposed boost methods:

- **Large Gap:** High accuracy on Object Classification (> 90%), low on Defect Analysis (< 50%).
- **Hallucination:** Models often invent defects that aren't there.



Results of 5 representative

MLLMs and Human.

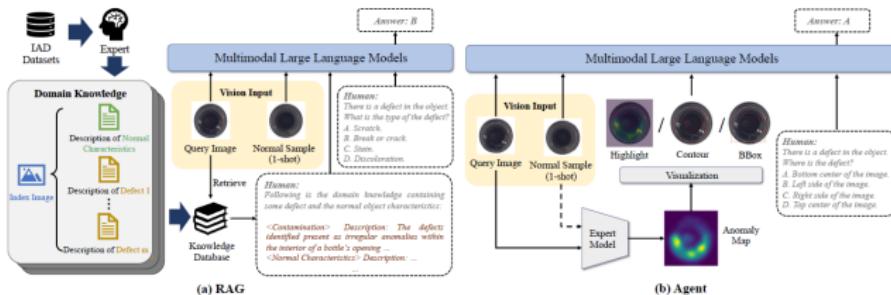


Illustration of two proposed boost methods.

Conclusion and Future Directions

Summary

- **Evolution:** Classical Processing → Semantic Understanding → Causal Reasoning.
- **VLMs** solved the *Cold Start* (Zero-Shot) problem.
- **MLLMs** are solving the Explainability problem.

Open Challenges

- **Latency:** MLLMs are too slow for 50ms production cycles.
- **Trust:** The most critical issue in MLLM-based VAD is Hallucination.
- **Agents:** Finally, the future VAD lies in Agentic AI.

References I

- Kashiani et al., *ROADS: Robust Prompt-driven Multi-Class Anomaly Detection under Domain Shift*, WACV 2025.
- Jeong et al., *WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation*, CVPR 2023.
- Zhou et al., *AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection*, ICLR 2024.
- Gu et al., *AnomalyGPT: Detecting Industrial Anomalies Using Large Vision-Language Models*, AAAI 2024.
- Jiang et al., *MMAD: A Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection*, ICLR 2025.