Robust Ensemble Morph Detection with Domain Generalization
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Proposed Method
Face morphing Is an image manipulation where  We propose an ensemble morph attack detection model which highly generalizes to a wide range of morphing « To explore the generalization capability of
two faces are blended together. At the time of attacks. It incorporates the inductive bias of CNNs and long-range dependencies in Transformers to include the our ensemble model, we benchmark it on a
passport enroliment, the passport photo can be strengths of both CNN and Transformer architectures at the same time. wide range of unseen target domains. It
easily manipulated with a morphing attack without « Since the RGB residual morphing noise Is effective for morph detection, we learn a CNN denoiser to calculate the Includes FERET [3], FRLL [4], FRGC [5],
the requirement of advanced forgery. residual artifacts for morph attack detection task. and AMSL [6] datasets with different

* To construct our ensemble model, we train a feed-forward network to compute the matching scores of all single landmark-based and GAN-based morphing
— rorene e models in the fusion phase. attacks. The landmark-based attacks
* To improve the effectiveness of our adversarial training, we craft the adversarial examples with high transferabllity Include Facemorpher [4], OpenCV [4], and
= using the model-based ensembling attack as follows: WebMorph [4] and GAN-based attacks
iInclude MIPGAN [7], StyleGANZ2, and Print
argmax,+ — log ((Z?zlai]i (x*)) - 1y) + Ad(x, x*) and Scan attack. | N
* In the robustness evaluation, we utilize new
et adversarial attacks in a white-box and black-
idstiiie box settings.
: | S v /4 Inception ResNet
)y , Residual Morphing Noise N Robustness and SOTA Results
penoiser * « The comparison results demonstrate that
Motivation £ . L] I i// ﬂ sand the proposed robust ensemble model
. . . ol | ‘ . g 474l E/ 174 maintains its superior performance on clean
Reliable detection of morphed face images can F | @H’ | | V4 Denolsed Tmage accuracy and also significantly surpasses
redu_ce _vulne_rablllt_y especially in highly secured : - the state-of-the-art studies.
applications including border control. = f « It is observed that the robust ensemble
§| = : SR N b model gains substantial improvements over
DAL b ;’ 5 Softmax the baseline ensemble model against
We integrate CNN and Transformer models and - L = | ViTBs 229 ’" . different adversarial attack in white-box and
propose an ensemble model for morph detection > = 5 E f=.=r — ) black-box settings.
that highly generalizes to a wide range of g | | ] E— E— g > zd Table 3, Comparison results with different studies on FRLL test set
morphing attacks. B s Y _- 0| 5 S ’ Target D-EER BPCER (1%) BPCER (10%)
_ _ ! j L: . % MixFacenet - SMDD 3.87 23.53 0.49
e We craft highly transferable adversarial L g 2 5 -~ PW-MAD - SMDD 520 6.4 0.49
examples for multi-perturbation adversarial ‘ ' = g Inception - SMDD 3.17 30.39 0.49
training to improve the adversarial robustness of e s —— L |5 = " Denoising based method 1.96 5.39 00.0
our ensemble models. Sosiar Luyer — E ? [ | . Ensemble Model 0.98 0.98 00.0
Robust Ensemble Model 0.98 0.98 00.0

e \We carry out extensive evaluations on different

datasets to prove the generalization capability Generalization Results

Table 2, Morph detection results against different adversarial attacks (AUC)

_ Target DIFGSM MIFGSM TIFGSM TPGD Square C&W
and adversarial robustness of our ensemble <
model . . i ] _ “3 Ensemble Model 84.60 80.67 83.26 71.39 74.17 74.80
' * We try different fusion strategies fc_)r our ensemble model that include soft voting, feature-based super learner, and £ RobustEnsembleModel 88.87 9182 943 9622 9404 OL82
Challenges score-based super learner strategies. =
* From this experiment, we can deduce that the ensemble model with VIT B-16 [1], VIT L-32 [1], N-ResNet [2], and 2 Ensemble Model 320 499 152 804 918 8638
» There exist large domain shifts between different the feature-based super learner components outperforms its competitor models on different unseen test sets. 2 Robust Ensemble Model 980 976 974 986 929 915
[aa]

morph attacks.
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